Что значит диапазон кей на радаре

Диапазон кей

Более новые устройства уже работают на диапазоне К (или «кей»). Его рабочая частота — 24150 МГц. Пропускная полоса составляет 100 МГц, а это значит — меньше помех.

Гаджеты, работающие в диапазоне «кей», обладают большим энергетическим потенциалом и меньшей продолжительностью периода. Следовательно, девайс имеет повышенную дистанцию выявления радаров ГИБДД (в полтора раза по сравнению с диапазоном Х) и компактные габариты.

Этот диапазон является базовым практически во всем мире. На его основе работают такие радары, как «Беркут», «Искра-1», а еще их модификации и версии с фото- и видеовозможностями.

Что значит диапазон «кей» на радаре? Ничего сложного, просто радар-детектор уловил сигнал, излучаемый радаром сотрудника ГИБДД, или камеру.

Спутниковое телевидение

Для спутникового телевидения используются два основных диапазона: Ku-диапазон (10,7 — 12,75 ГГц) и С — диапазон (3,5 — 4,2 ГГц). Европейские спутники вещают преимущественно в Ku-диапазоне. Российские и азиатские спутники обычно ведут вещание в обоих частотных диапазонах. Ku-диапазон имеет практическое преимущество перед С-диапазоном. Ввиду более короткой длины электромагнитной волны приём сигналов Ku-диапазона возможен параболической антенной небольших размеров, диаметром менее 1 метра.

Ku-диапазон условно разбит на три поддиапазона:

  • Первый поддиапазон (10,7-11,7 ГГц) носит название диапазон FSS.
  • Второй поддиапазон (11,7-12,5 ГГц) называется DBS-диапазоном.
  • Третий поддиапазон (12,5-12,75 ГГц) иногда называется по имени французских спутников Telecom, использующих для вещания эти частоты.

Соответственно, и Ku-конвертеры бывают трех типов : однодиапазонные с полосой частот 10,7 — 11,7 ГГц, двухдиапазонные — 10,7 — 12,5 ГГц. и трехдиапазонные (или Full Band, Wide Band, Triple) с полосой частот 10,7 — 12,75 ГГц. Для приема НТВ+ и «Триколор» применяются однодиапазонные конверторы 11,5 — 12,75 ГГц с круговой поляризацией и частотой гетеродина 10,75 ГГц.. Данный вид конверторов, как и круговую поляризацию в Ku диапазоне, для спутникового телевещания никто, кроме России не применяет.

Функциональные задачи спутников с ретрансляционной аппаратурой Ка-диапазона

В табл. 1 предпринята попытка классифицировать полезную нагрузку Ка-диапазона по ее основной функциональной задаче. В итоге спутники, представленные в таблице, отмечены цветом в зависимости от целевого функционального назначения бортовой ретрансляционной аппаратуры Ка-диапазона. Для краткости и однозначности результаты такого анализа сведены в табл. 2.

Наибольший интерес сегодня связан с развитием многолучевых спутниковых сетей массового обслуживания, которые часто называют системами спутникового ШПД. Причем сервисы, доступные в таких сетях, начинают предоставляться как для фиксированных абонентов, так и для абонентов, находящихся на подвижных средствах. Более того, проектируются и целевые системы Ка-диапазона для обслуживания подвижных средств в глобальном масштабе (сеть Global Xpress на основе группировки спутников Inmarsat 5) и региональном масштабе (сеть Telenor на основе спутника Thor 7 для обслуживания в том числе северных морей). Приспосабливаются для этой цели и действующие сети Ка-диапазона компании Viasat. С другой стороны, в ряде подобных систем диапазон Ка используется исключительно для организации широкополосных радиолиний с центральной станцией сети, а абонентские устройства работают в лучах (или луче) Кu-диапазона (первая такая многолучевая система iPstar работает с 2003 г., сегодня проектируется многолучевая сеть Intelsat Epic для подвижных абонентов). Особый интерес такие решения представляют при реализации широкополосных многолучевых спутниковых систем, в которых требуется сверхширокополосность на линии ЦС-КА и/или КА-ЦС, и уже рассматривается целесообразность перехода в O/V-Диапазон частот .

Другим интересным приложением спутниковых многолучевых сетей Ка-диапазона является организация регионального спутникового вещания (в том числе с использованием подвижных станций приема ТВ). Трансляция пакета программ осуществляется в одном луче или в группе лучей. Такие системы получили свое практическое воплощение на территории США и Канады. Эффективность организации многолучевого вещания, например, для России сегодня неочевидна в силу специфики рынка регионального телевизионного вещания, низкой плотности населения и низкой покупательной способности.

Как следует из табл. 1, интерес представляют также системы с перенацеливаемыми узкими лучами. Такие решения, очевидно, востребованы в системах сбора новостей и передачи информации из мест актуальных событий, в том числе для целей оборонных ведомств.

Что такое К-диапазон на антирадаре, принцип работы устройства

Слово “антирадар” зачастую используется для обозначения Радара-детектора. Своеобразный синоним, который придумали пользователи этих устройства для удобства. Слова эти схожи, но различия в них колоссальны.

Ведь антирадар создает помехи, а радар детектор лишь информирует о наличии цифрового устройства. Ниже речь пойдет именно о радаре-детекторе. Для чего нужно это устройство?

Радар-детектор, небольшое электронное устройство, которое, невзирая на свой размер, приносит колоссальную пользу. Наличие такого устройства в автомобиле делает передвижение безопасным, и лишенным нежелательных штрафов. Антирадар предупреждает водителя о различных датчиках, будь то видеокамера, или измеритель скорости в патрульной машине.

Принцип работы

Радар работает благодаря тому, что способен улавливать волны различной частоты. Эти волны активируют звуковой сигнал. Так работают самые простые антирадары. Но они уже давно вышли из моды, уступив место боле современной электронике с множеством настроек.

Этот переход был обусловлен тем, что со временем число приборов, испускающих волны различного диапазона, многократно выросло. Это стало причиной множества помех, которые сделали работу устройства полностью невозможной.

Сложная начинка позволяет вносить коррективы в работу на программном уровне. Но в большинстве случаев, такие меры ни к чему. Большинство современных антирадаров оборудованы базовыми настройками. Обычный режимы:

  • Город
  • Трасса
  • Пригород

Вполне хватает, чтобы настроить компьютер на максимально эффективную работу. Однако производительность процессора далеко не главный элемент в оценивании этой электроники

Не менее важно количество диапазонов волн, которые способен улавливать антирадар. Количество и их частота

Ведь чем она выше, тем больше радиус действия у прибора, и тем меньше помех.

Основные диапазоны волн

Следить за тем, чтобы диапазон приема в антирадаре шел в ногу со временем действительно важно. Ведь в том случае, если устройство нового поколения, для получения информации использует более высокие частоты, чем может улавливать приемник, то он окажется бесполезен

И хотя базовые частоты существуют годами, не меняясь, время от времени появляются устройства с нестандартной частотой волны. Одной из таких новинок является диапазон К.

Диапазон K на радаре

К – это сравнительно новый диапазон, имеющий большие перспективы в работе. Очень популярен в странах СНГ. Его рабочая частота составляет двадцать пять тысяч мегагерц. Такая частота делает работу стабильной и позволяет с комфортом эксплуатировать прибор. Помимо этого диапазона есть еще несколько основных рабочих:

  1. X . Это один из самых распространенных диапазонов применяемых в устройствах ДПС. Рабочая частота диапазона составляет 10 гигагерц.
  2. Ka. Очень перспективный диапазон. Благодаря частоте в тридцать семь гигагерц работать с ним легко и удобно. Несмотря на явные плюсы, только набирает популярность в России и странах ближнего зарубежья.
  3. Ky. Диапазон, применяемый большинством европейских стран. Свое признание нашел в Прибалтике.
  4. L. Новая технология, которая подразумевает использование узконаправленного луча. В течение короткого периода времени обратные импульсы от такого радара возвращаются вместе с необходимой информацией.

Однако диапазон рабочей волны это далеко не единственное, в чем различаются антирадары.

Различие по принципу работы

Антирадары различаются между собой не только по вышеуказанным признаком. Есть еще один важный момент в его работе. Тип радара определяется в зависимости от волн, которые он использует. Существует два варианта:

  • Радиоволны;
  • Лазер.

Каждый из перечисленных образцов в работе имеет как свои плюсы, так и минусы.

Антирадар использующий лазерные импульсы более быстр. Обработка информации происходит в считанные мгновения. Однако его эксплуатация уместна только в ясную погоду. Снег, дождь или туман создают помехи для работы лазера, делая его использование невозможным.

Антирадар на радиоволнах устойчивее к природным капризам. Однако это не значит, что приобретя такой аппарат можно смело о них забыть. Помехи будут. В их роли выступают радиоволны от приемников и прочих устройств.

Например, антирадар с диапазоном Ku использовать в России бессмысленно. Дело в том, что его частота 13450 мегагерц.  Именно на этой частоте передается спутниковое телевиденье.  В результате помех становится настолько много, что не помогают никакие настройки.

Как настроить антирадар

Настраивать радар-детектор принято один раз, после чего выбранные параметры сохраняются в памяти. Сегодня в нашей стране используют в основном два диапазона, в которых функционируют полицейские радары:

  • Х – в этом диапазоне работает радар типа Сокол, который давно сняли с производства, но в некоторых регионах они все еще встречаются.
  • К-диапазон – в нем работают современные измерители скорости.
  • Отдельно можно выделить лазерные радары, которые работают не на каком-то конкретном диапазоне, а функционируют за счет длины световой волны, которая измеряется в нанометрах.

Существуют и другие диапазоны частот:

  • VG 2;
  • Spectre I-IV;

Эти диапазоны в нашей стране пока не используются, поэтому мы советуем их отключать. Прежде всего, при этом уменьшится частотность ложных срабатываний. Независимо от того, что измерительного оборудования в таких диапазонах в нашей стране нет, не исключены срабатывания от других источников. Также повышается быстродействие процессора гаджета, так как он будет работать на распознавание только определенных диапазонов.

Следует отметить, что в новых антирадарах Cobra диапазон Ka задействован по умолчанию и его отключить невозможно. Диапазон Х включается в настройках и вы можете его отключить при необходимости. Неиспользуемые в нашей стране диапазоны частот по умолчанию отключены. Другими словами, современные модели радар-детекторов Cobra настроены для эксплуатации в России. В заводских настройках выбран режим движения Трасса – он оптимальный во многих случаях.

В городском режиме работы в моделях антирадаров Cobra RU 935, 945, 955 и 745, 755 и 775 СТ сила сигнала мощностью один и два не озвучивается, поэтому использовать режим в незнакомой местности мы не рекомендуем. Город и Город Макс хорошо подходят для городов, где полицейские в основном вооружены Стрелками.

Абоненты на подвижных средствах и использование переносимых VSAT

Системы HTS изначально имели целевую функцию – предоставление ШПД физическим абонентам и малым компаниям. Но по мере развития этой технологии стало очевидно, что имеется возможность использовать переносимые, быстро разворачиваемые VSAT-станции для различных применений. Кроме того, большой коммерческий сегмент VSAT связан с обслуживанием абонентов на подвижных средствах, в основном на море и в воздухе. Обслуживание абонентов на морских и речных судах осваивается достаточно давно. Имеется много компаний, которые создали свои сети VSAT (согласовав использование различных традиционных спутников и центральных станций), способные предоставить услуги практически на всей площади Мирового океана. Одной из проблем развития этого сегмента долгое время была стоимость спутникового ресурса, но с появлением спутников HTS, а тем более глобальных сетей HTS, эта проблема уже не столь ощутима (см. таблицу 2).

Вторым по объему рынка является сегмент обслуживания воздушных судов. До недавнего времени этот сегмент был связан с системами подвижной спутниковой службы в L- и S-диапазонах. Но себестоимость канала столь высока (соответственно, и стоимость услуги), а скорость каналов столь незначительна, что широким коммерческим успехом это решение не пользовалось. С появлением систем HTS ситуация принципиально изменилась. Идет активное создание бесшовных сетей ШПД для обслуживания абонентов на воздушных судах, тем более что, по прогнозам компании Airbus, в период 2019–2028 гг. будет вводиться в год 1248 новых воздушных судов (пассажирских, предназначенных для перевозки более 100 человек, и грузовых).

Но есть, конечно, и проблемы при создании VSAT для воздушного судна. В первую очередь это проблема ЭМС , что существенно увеличивает цену услуги по сравнению с аналогичной услугой в сети HTS в наземных условиях.

Однако общей проблемой для обслуживания абонентов на подвижных средствах является отсутствие технических и технологических решений, которые обеспечивают создание дешевых абонентских терминалов, позволяющих работать в движении (тем более при высокой динамике движения). Очевидно, что применение обычных электромеханических следящих антенн для морских судов ограничено их стоимостью, которая составляет примерно от $30 тыс. для антенны 0,6 м. Для воздушных судов стоимость таких антенн уже на порядков выше, а их инсталляция примерно соизмерима с их стоимостью.

Попытки создать дешевые ($100– 200) антенные решетки с электрическим сканированием луча пока не увенчались успехом , и практически не видно решений, которые смогли бы в перспективе решить эту задачу. Но поисковые исследования в этой области идут очень активно.

В случае переносимых средств наилучшим решением остается использование абонентских терминалов с обычными зеркальными антеннами, к которым предъявляются требования быстрого и многократного развертывания в любых климатических условиях.

Дополнительные режимы и функции

Лазерный диапазон.
Первый раз устройства, работающие с лазером, начали применять для вычисления скорости еще в 90-х годах прошлого столетия. Принцип работы радар-детектора очень прост: подается несколько коротких сигналов с равным промежутком времени. Проведя цифровые вычисления, устройство выдает среднее число. Этот принцип по своей сути остался прежним, а вот расстояние и частота сигналов как раз таки поменялись. Сейчас длина импульсов колеблется от 800 нм до 1100 нм. Все современные радар-детекторы оснащены специальными сенсорами, которые улавливают лазерные импульсы. Единственное «НО» — работать устройство с лазерным диапазоном может только в сухую погоду.

Режим VG2 или Spectre.
Применяют эти режимы в тех регионах, где использование радар-детекторов запрещено законом. В основном это европейские страны и некоторые штаты в Америке. Суть такова, что пеленгатор имеет сверхчувствительный приемник, который и улавливает сигналы радар-детектора. При этом с большой долей вероятности указывает местонахождение запрещенного девайса. Именно поэтому в последних версиях хороших радар-детекторов есть встроенная функция автоматического отключения своего гетеродина, если в его «поле зрения» появится радар, что работает в VG2 диапазоне.

Важно!
В России, Беларуси и на Украине некоторое спецоборудование приема и передачи связи работает в режиме VG2. Поэтому на момент пребывания в этих странах данную функцию лучше выключать, дабы не вызывать ложных сигналов

Режим РОР.
Есть радары, которые применяют только один импульс для измерения скорости. Длительность его может быть до 1/15 секунды. То есть скорость такие радары измеряют очень быстро — достаточно 1 секунды. Обычно такой режим применяется в радаре типа «Искра». Если радар-детектор не оснащен РОР-режимом, то он попросту не может его идентифицировать. Режим РОР — это стандарт международного уровня, который соблюдают все мировые лидеры.

Режимы Ultra-X и Ultra-K.
Это режимы, представленные создателями из Китая и Кореи. По сути, это тот же РОР, только «урезанный» и не имеющий сертификации. Режимы не отличаются корректной работой с импульсами диапазонов Х и К.

Режимы Hyper-X и Hyper-K.
Это самые новые закрытые комплексы системы. Суть работы заключается в двойном эвристическом анализе принимаемых сигналов. Комплексы обладают очень высокой точностью детектирования сигналов любой продолжительности в таких режимах, как Х, К и NEW К (расширенный диапазон).

Функция SWS.
Для пользования радар-детекторов в России эта функция не нужна. По своей сути SWS — это система, которая предупреждает об опасности. То есть при приближении к аварийному участку радар-детектор подает сигнал-предупреждение.

Функция «Антисон».
Эта опция разработана специально для того, чтобы проверять реакцию водителя через определенный промежуток времени. Алгоритм работы таков: автомобильный радар издает звуковой сигнал, и если в кратчайший период времени водитель не отключит его, то устройство начинает «бить тревогу».

Первые тяжелые аппараты отечественного производства

Государственное предприятие «Космическая связь» (ГП КС) также принимает активное участие в освоении новых диапазонов. Первым из заказанных ГП КС космических аппаратов (КА), на котором были установлены стволы Ка-диапазона, стал «Экспресс-АМ4» – спутник тяжелого класса с 62 стволами на борту для орбитальной позиции 80 град. в.д. Он имел два широкополосных ствола с рабочей полосой 112 МГц, подключаемых по входу и выходу в любой комбинации к двум перенацеливаемым приемопередающим антеннам с размерами луча ДН 1,5х1,5 град. Полезная нагрузка Ка-диапазона на этом аппарате задумывалась как экспериментальная, на ней предполагалось отрабатывать системные и технологические решения в новом диапазоне. К сожалению, при запуске в августе 2011 г. спутник не вышел на расчетную орбиту и позднее был затоплен в океане. Сразу же был заказан его полный аналог «Экспресс-АМ4R», запуск которого запланирован на май 2014 г.

В 2009 г. ГП КС подписало контракт на изготовление и поставку двух КА – «Экспресс-АМ5» и «Экспресс-АМ6», первых тяжелых аппаратов отечественного производства. На каждом борту установлено по 12 стволов Ка-диапазона (десять для прямых каналов и два – для обратных), подключенных к 10 фиксированным лучам 0,7х0,7 град., нацеленным на наиболее густонаселенные территории РФ (рис. 1).

КА «Экспресс-АМ5» выведен на орбиту в декабре 2013 г., запуск второго аппарата запланирован на июль 2014-го. Технические характеристики стволов приведены в таблице.

Отметим, что в бортовых ретрансляторах Ка-диапазона утрачивают свое первоначальное значение понятия «ствол» или «транспондер» как отдельный «приемопередающий тракт, в котором радиосиналы проходят через общие усилительные элементы (общий передатчик) в некоторой выделенной стволу полосе частот» . В современных HTS-спутниках один широкополосный передатчик может подключаться сразу к нескольким лучам, работающим каждый в более узкой полосе частот, также и приемник может объединять сигналы, поступающие из нескольких лучей. Уместнее для обозначения пути прохождения сигнала от центральной станции к абонентскому терминалу и обратно использовать термин «канал связи».

Указанные в таблице значения ЭИИМ и добротности бортового ретранслятора позволяют использовать в сети абонентские терминалы с антеннами диаметром 0,8–1,0 м и мощностью передатчика 2–4 Вт. Впервые в отечественной практике на КА «Экспресс-АМ5/6» применены многолучевые антенны и повторное использование частот при пространственном разделении. В лучах 2 и 7, 1 и 9 частоты полностью совпадают, но за счет пространственного разноса лучей взаимные помехи незначительны. Полезную нагрузку Ка-диапазона на этих спутниках можно рассматривать как первый шаг к построению HTS.

Стволы Ка-диапазона всех трех КА «Экспресс-АМ4R/5/6» планируется использовать для организации отечественной спутниковой системы высокоскоростного доступа (ССВД). Суммарная пропускная способность ССВД составит около 10 Гбит/с, планируемое число пользователей – более 100 тыс. домохозяйств (технически система может обеспечить подключение 200–400 тыс. абонентов).

Подъем сигналов на спутники будет осуществляться из центров космической связи (ЦКС) ГП КС. Для «Экспресс-АМ5» будут использоваться луч № 2 и ЦКС «Дубна», для «Экспресс-АМ6» – луч № 3 и ЦКС «Хабаровск», для «Экспресс-АМ4R» – ЦКС «Железногорск».

На рис. 2 показана территория Российской Федерации, охватываемая ССВД, на рис. 3 – схема организации наземной сети.

Каждая станция с антенной диаметром 6,3 м и передатчиком 500 Вт на каждой из поляризаций в состоянии загрузить до 6 стволов.

Таким образом, для загрузки 10 стволов для прямых каналов установлены по две такие станции на каждом из двух ЦКС, еще по одной станции – в качестве резерва.

Краткие итоги

Один из основных трендов связан с организацией многолучевых сетей спутниковой связи типа VSAT, ориентированных на обеспечение ШПД для физических абонентов (домохозяйств) в сочетании с предоставлением услуги спутникового вещания. Многие из таких систем созданы и создаются при участии государства как часть национальных программ развития ШПД. Активно проектируются аналогичные спутниковые системы глобального и регионального характера для обеспечения работы абонентов на подвижных средствах.

Все больший практический интерес к коммерческим спутниковым системам Ка-диапазона проявляют военные ведомства, используя часть ресурса коммерческой сети в своих целях или используя часть полезной нагрузки спутника для организации собственных сетей в проблемных регионах.

Особо следует отметить, что практически во всех европейских странах идет активный процесс поиска новых аппаратных технических и технологических решений. Основную поддержку в этом направлении оказывают государственные ведомства и Европейское космическое агентство. Аналогичные процессы развиваются в Японии и в ряде других стран. В США коммерческие сети Ка-диапазона поддержаны государственной программой субсидирования услуг, предоставляемых в сельских и малонаселенных регионах. Кроме того, финансируются аппаратные и программные разработки, имеющие двойное применение. Значительную активность в реализации программ спутникового ШПД в Ка-диапазоне проявляют коммерческие структуры в Австралии и правительство Австралии в рамках национального проекта по развитию интернет-доступа. Начато предоставление услуг спутникового ШПД в Ка-диапазоне в ряде африканских стран. В ноябре 2012 г. космическое агентство Индии (ISRO) объявило конкурс на создание многолучевой спутниковой системы ШПД Ка с запуском спутников в 2016 г. На фоне этого общемирового тренда решение Минкомсвязи в сентябре 2012 г. о замораживании проекта РСС-ВСД в России под предлогом слабой коммерческой составляющей выглядит как минимум странно, поскольку это и есть одна из задач Минкомсвязи — создать условия для коммерциализации проекта, имеющего национальное значение, в котором одна из ключевых задач — ликвидация цифрового неравенства. Именно Минкомсвязи, как государственный заказчик, может организовать объективный независимый анализ и пересмотреть при необходимости свои же исходные требования по проекту РСС-ВСД и/или принятые технические решения при проектировании системы с целью ее доведения до уровня коммерциализации в условиях России или создать условия для реализации нового подобного проекта. В целях и задачах, объявленных Минкомсвязи сегодня, делается основная ставка на технологию 4G ( и ВОЛС (http://2018.minsvyaz.ru/#-c3), спутниковая составляющая никак не отмечена.Очевидно, что нет смысла в дискуссии на тему: нужна ли спутниковая связь и вещание в России?

Литература

  1. Kyrgiazos A. Towards a Very High Capacity Broadband Satellite. PGNET Conferences, 2011.
  2. Анпилогов В.Р., Афонин А.А. Затухание в спутниковых каналах Ku- и Ка-диапазонов // Спутниковая связь и вещание. — 2010.
  3. 3.   Анпилогов В.Р., Останний А.Н. Какой диапазон частот предпочтителен для развития сетей VSAT в России // Технологии и средства связи. -2001. -№ 1.
  4. Анпилогов В.Р., Афонин А.А. Методика вероятностной оценки пропускной способности многолучевой сети массового обслуживания // Электросвязь. — 2011. — № 7. С. 45-47.
  5. Department for Business Innovation & Skill, Broadband Delivery UK Theoretical Exercise, December 2010, www.bis.gov.uk.
  6. Roger J. Rusch and Robert Landon, Spot Beam Satellites For Broadcasting Television , AIAA-2003, 21st International Communications Satellite Systems Conference and Exhibit.

Опубликовано: Специальный выпуск «Спутниковая связь и вещание»-2013Посещений: 6754

  Автор

В рубрику «Спутниковая связь» | К списку рубрик  |  К списку авторов  |  К списку публикаций

Добавить комментарий